

JAYOTI VIDYAPEETH WOMEN'S UNIVERSITY, JAIPUR FACULTY OF PHYSIOTHERAPY & DIAGNOSTICS

Faculty Name	:	JV'n Ankita
Program	:	B.Sc. RT 5 th Semester
Course Name	:	Modern Imaging in Diagnosis.
Topic Name	:	Computerized Tomography (CT) Scan (effect of
		M.R.I & C.T. and the cross sectional anatomy)

Program Outcome -

It plays an important role in health sector, provides knowledge about the Diagnostics of any injury, illness or disability in the human body by the help of various modalities or machineries.

Course Outcome-

- Develop an understanding of the subject.
- Understand the role of modern imaging.
- Understanding the practical aspects of Advancement of imaging..

Academic Day starts with -

Greeting with saying 'Namaste' by joining Hands together following by 2-3 Minutes Happy session, Celebrating birthday of any student of respective class and National Anthem.

Previous Session- **Computerized Tomography** (**CT**) **Scan(advantage, disadvantage & limitation).**

Topic to be discussed today- Today We will discuss about- Computerized Tomography (CT) Scan. – (effect of M.R.I & C.T. and the cross sectional anatomy)

- ✤ Lesson deliverance (ICT, Diagrams & Live Example)- ICT, Diagrams
- ➢ Diagrams

Introduction & Brief Discussion

COMPUTERIZED TOMOGRAPHY (CT) SCAN :-

EFFECT OF M.R.I.

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scan are both valuable medical imaging techniques, but they have different effects, advantages, and considerations:

1. Ionizing Radiation:

MRI: MRI does not use ionizing radiation, making it safer in terms of radiation exposure compared to CT scans.

CT: CT scans use X-rays, which involve ionizing radiation. While the doses are typically considered safe, repeated CT scans can accumulate radiation exposure over time.

2. Soft Tissue Differentiation:

MRI: MRI is particularly effective at distinguishing between different soft tissues, making it superior for visualizing structures like muscles, tendons, ligaments, and nerves.

CT: While CT scans provide better soft tissue differentiation compared to conventional X-rays, they may not offer the same level of detail as MRI for soft tissues.

3. Bone Imaging:

MRI: MRI is less effective at imaging bones and is generally used for assessing soft tissues.

CT: CT scans are excellent for visualizing bones and are often used for assessing fractures, bone density, and bone-related conditions.

4. Contrast Agents:

MRI: Contrast agents used in MRI are generally considered safe, but allergic reactions or adverse effects can occur in some individuals.

CT: Contrast agents used in CT scans carry a slightly higher risk of adverse reactions compared to MRI contrast agents.

5. Imaging Principle:

MRI: MRI uses powerful magnets and radio waves to generate images based on the body's response to these fields.

CT: CT scans use X-rays and computer algorithms to create cross-sectional images.

6. Patient Suitability:

MRI : MRI might not be suitable for patients with certain medical implants, devices, or conditions due to potential interactions with the magnetic fields.

CT : CT scans are generally more suitable for a wider range of patients, but precautions are taken for individuals with allergies or kidney issues when using contrast agents.

7. Image Quality:

MRI : MRI provides excellent soft tissue contrast, making it well-suited for assessing conditions like brain and spinal cord disorders, joint injuries, and tumors.

CT : CT scans offer good contrast for visualizing bones and are useful for diagnosing conditions like lung diseases, trauma, and vascular issues.

8. Scan Duration:

MRI : MRI scans can take longer than CT scans, which might be challenging for patients who have difficulty lying still.

CT : CT scans are generally quicker to perform compared to MRI scans.

9. Claustrophobia:

MRI : The confined space of the MRI machine can cause claustrophobia in some patients.

CT : CT machines are generally less confining and may be more suitable for claustrophobic patients.

10.Image Interpretation:

MRI : Interpreting MRI images requires expertise in recognizing different tissue characteristics and abnormalities.

CT : CT images are easier to interpret for many medical professionals due to their familiarity with X-ray images.

EFFECT OF CT SCAN :-

Ultrasonography (USG), commonly known as ultrasound, and Computed Tomography (CT) scans are both valuable medical imaging techniques, each with its own effects, advantages, and considerations:

1. Ionizing Radiation:

Ultrasound : Ultrasound does not use ionizing radiation, making it a radiation-free imaging technique.

CT : CT scans use X-rays, which involve ionizing radiation. There is a potential radiation risk associated with CT scans.

2. Soft Tissue Differentiation:

Ultrasound : Ultrasound provides good soft tissue differentiation, particularly for organs, blood vessels, and pregnancy-related imaging.

CT : While CT scans offer better soft tissue differentiation compared to conventional X-rays, they may not provide the same level of detail as ultrasound for certain soft tissues.

3. Bone Imaging:

Ultrasound : Ultrasound is not as effective at imaging bones and is generally used for soft tissue imaging.

CT : CT scans are excellent for visualizing bones and are often used for assessing fractures, bone density, and bone-related conditions.

4. Contrast Agents:

Ultrasound : Contrast agents are used in some ultrasound examinations, but they are less commonly used compared to CT scans.

CT : Contrast agents are more commonly used in CT scans to enhance visualization of blood vessels and certain tissues.

5. Imaging Principle:

Ultrasound : Ultrasound uses high-frequency sound waves to create images based on their reflections from within the body.

CT : CT scans use X-rays and computer algorithms to create cross-sectional images.

6. Patient Suitability:

Ultrasound : Ultrasound is generally well-tolerated and suitable for a wide range of patients, including pregnant women and children.

CT : CT scans have a wider range of applications but may not be suitable for pregnant women and individuals with certain medical implants or allergies.

7. Image Quality:

Ultrasound : Ultrasound provides real-time imaging, making it useful for observing moving structures like the heart or fetus.

CT : CT scans offer detailed anatomical information and are valuable for diagnosing conditions involving bones, organs, and soft tissues.

8. Scan Duration:

Ultrasound : Ultrasound scans are generally quick and real-time, making them ideal for observing dynamic processes.

CT : CT scans are also relatively quick, but the scan time can vary based on the complexity of the study.

9. Cost and Availability:

Ultrasound : Ultrasound machines are generally less expensive and more widely available than CT scanners.

CT : CT scanners can be more expensive to operate and maintain.

10. Operator Skill:

Ultrasound : Operator skill plays a significant role in obtaining high-quality ultrasound images.

CT: CT scans are more automated, requiring less operator input for image acquisition.

CROSS SECTIONAL ANATOMY OF HUMAN BODY :-

Here are some of the key cross-sectional anatomical features that can be visualized using CT scans:

Brain and Skull:

Brain lobes, ventricles, and basal ganglia, Skull bones, sinuses, and cranial sutures.

Neck:

Throat structures: trachea, esophagus, thyroid gland, Cervical vertebrae, vertebral discs, and spinal cord.

Chest and Thorax:

Heart chambers, valves, and blood vessels (coronary arteries, aorta, pulmonary arteries) Lungs, bronchi, and pulmonary veins, Rib cage, sternum, and thoracic vertebrae.

Abdomen and Pelvis:

Liver, gallbladder, pancreas, spleen, and kidneys, Stomach, intestines, and abdominal blood vessels (aorta, vena cava),Reproductive organs (ovaries, uterus, prostate),Pelvic bones, bladder, and pelvic musculature.

Spine and Spinal Cord:

Vertebrae, intervertebral discs, and spinal cord, Spinal nerve roots and associated structures.

Extremities:

Upper extremities: bones (humerus, radius, ulna), joints (shoulder, elbow), muscles.

Lower extremities: bones (femur, tibia, fibula), joints (hip, knee, ankle), muscles.

Blood Vessels:

Arteries and veins throughout the body, including vascular structures in the brain (CT angiography)

Joints:

Articular surfaces and structures in joints, such as cartilage, ligaments, and synovial fluid

Soft Tissues:

Muscles, adipose tissue (fat), and various organs in the body

Head and Face:

Facial bones, sinuses, orbits, nasal passages

Anatomical Landmarks:

Anatomical landmarks used for reference and orientation in medical imaging

University Library Reference-

- > The Physics Of Radiology and Imaging by K. THAYALAN
- > Textbook of Radiology for Residents and Technicias by S. K. BHARGAVA
- Suggestions to secure good marks to answer in exam-
 - > Explain answer with key point of the answers

Questions to check understanding level of students-

- ♦ What are the effect of M.R.I. ?
- ♦ What are the effect of U.S.G. ?
- Describe the cross sectional Anatomy of human body ?

Next Topic- N.A.

National song' Vande Mataram'